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ULB C.P. 231, Université Libre de Bruxelles, B-1050, Bruxelles, Belgium

E-mail: Chethan.Krishnan@ulb.ac.be, skuperst@ulb.ac.be

Abstract: Using coordinates that manifest the S2-S3 split of the base, we study D3-

branes localized on the three-sphere in the Klebanov-Strassler background. We find a

numerical solution for the warp factor and show the emergence of the AdS throat near the

stack. In the dual gauge theory, this corresponds to an RG flow along the mesonic branch.

We demonstrate how the cubic superpotential of the N = 4 SYM theory emerges at the

end of the RG flow.

Keywords: D-branes, Gauge-gravity correspondence, Supersymmetric gauge theory.

mailto:Chethan.Krishnan@ulb.ac.be
mailto:skuperst@ulb.ac.be
http://jhep.sissa.it/stdsearch


J
H
E
P
0
5
(
2
0
0
8
)
0
7
2

Contents

1. Introduction 1

2. The deformed conifold 4

3. D3-brane supergravity 8

4. The dual gauge theory and the mesonic branch 11

5. Concluding remarks 12

A. Technicalities: S
2, S

3 and the Kähler metric 13

B. Laplacian in two different coordinates 14

C. Matrix technology 15

1. Introduction

The AdS/CFT correspondence [1] enunciates that the low energy effective 4d physics on

a heavy stack of D3-branes at a smooth point in flat space-time is dual to the near hori-

zon limit of the 10d curved (by the D-branes) geometry. More specifically, the original

AdS/CFT conjecture proposed a duality between N = 4 SU(N) SYM gauge theory and

type IIB supergravity on AdS5 × S5.

One powerful way of constructing gauge theories with less supersymmetry is to consider

instead stacks of D3-branes at the singular tip of a Calabi-Yau cone X6 [2, 3]. Exactly

like in the flat space case the radial coordinate of X6 is absorbed in the AdS5 part of the

metric and the near horizon geometry becomes AdS5 × Y 5, where Y 5 is the 5d base of X6.

The number of supercharges in the dual gauge theory is completely encoded in Y 5 and is

maximal only for Y 5 = S5.

The most notorious and well studied N = 1 example of this kind is the Klebanov-

Witten model, which arises from D3-branes placed at the tip of the singular conifold. It

was argued in [2] that the low energy effective gauge theory living on the stack has a non-

trivial RG fixed point and, therefore, is conformal. The gauge group is SU(N) × SU(N)

and the field content consists of four chiral bi-fundamentals A1,2 and B1,2 that transform

in the (N, N̄) and the (N, N̄) representations respectively. The theory has also a marginal

superpotential W ∝ Tr detij AiBj. The 5d base of the conifold T 1,1 is topologically S3×S2

and has an SU(2) × SU(2) × U(1)R isometry, which appears also as the global symmetry

of the gauge theory. The two SU(2) factors act on Ai’s and Bi’s respectively and the
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non-trivial R-symmetry charges are 1
2 for all the fields. It is straightforward to check that

with this assignment the gauge couplings do not run. The theory enjoys also an additional

non-geometric baryonic symmetry U(1)B and a chiral Z2 symmetry, which interchanges

Ai’s and Bi’s and also the two SU(2) groups.

The conformal properties of the gauge theory are encoded in the AdS5 part of the

metric. This is evident from the fact that the 4d conformal group is isomorphic to the

AdS5 isometry group SO(4, 2). As we have already mentioned, the AdS5 factor owes its

appearance to the conic structure of the 6d CY space X6. It follows therefore, that in order

to build a non-conformal extension of the AdS/CFT duality (the so-called non-AdS/non-

CFT correspondence [4, 5]) we have to change the conic structure of X6, while still possibly

keeping some of the supersymmetries. For the conifold there are two ways to achieve this

goal. The deformation changes the complex structure of the conifold, but still keeps the

Kähler structure, while the resolution of the conifold breaks the Kähler but preserves the

complex structure. Though both the deformation and the resolution make the conifold

completely regular and smooth, they look different at the tip. In the former case the S3

of T 1,1 approaches a finite size and the S2 shrinks to zero, while in the latter case the

situation is exactly the opposite.

The supersymmetric supergravity solution based on the deformed conifold was con-

structed by Klebanov and Strassler [6] and has since been a subject of intensive research.

The solution necessarily incorporates M fractional D3-branes, which are actually regular

D5-branes wrapped on the two-sphere. On the gauge theory side it means that the gauge

group is now SU ((k + 1)M)× SU(kM). The theory, as expected, is not conformal. When

one gauge group becomes weakly coupled, the other becomes strongly coupled. Under

Seiberg duality, however, the rôles of the couplings are exchanged, while the gauge group

becomes SU(kM) × SU ((k − 1)M). The theory exhibits, therefore, a cascade of Seiberg

dualities. At each step of the cascade we have k → k − 1 and at the last step we arrive

at the SU(M) N = 1 SYM. It was first suggested by Aharony [7] that the theory is at a

specific Z2-invariant point on the baryonic branch |A| = |B|. The broken baryonic sym-

metry U(1)B thus implies that the gauge theory has a pseudoscalar Goldstone boson and

its massless scalar superpartner. The supergravity dual of these modes was later found

in [8]. The baryonic branch allows also for solutions that break the Z2 symmetry [10]. The

corresponding supergravity duals based on the so-called resolved warped deformed conifold

were constructed in [9] (see also [10, 11]).

In this paper we want to construct a gravity dual of the mesonic branch of the gauge

theory. In this case the gauge group is SU(Ñ +M)×SU(Ñ) and the cascade step is simply

given by Ñ → Ñ −M . When Ñ becomes smaller than M no Seiberg dual description ex-

ists anymore. Instead the superpotential receives a non-perturbative Affleck-Dine-Seiberg

(ADS) contribution and the quantum moduli space describes M copies of the deformed

conifold. The SU(Ñ + M) gauge group is broken by the meson VEVs, while the defor-

mation parameter of the conifold depends on the strong coupling scale of the surviving

SU(M) gauge group. The branch essentially describes Ñ D3-branes moving on the de-

formed conifold. Actually, a similar branch exists also for Ñ > M . It corresponds to

mesons acquiring large enough VEVs, such that the quantum corrections can be captured
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by an ADS like term in the superpotential. We will now have N D3-branes moving on the

deformed conifold, where N is the value of Ñ at the specific step of the cascade.

On the supergravity side the setup should include both M fractional branes of the

original KS background and N physical D3-branes. To produce a regular 10d solution

we have to localize the D3-branes at a point on the conifold. We will be interested in a

D3-brane stack placed at the “tip”, namely the North pole of the blown-up three sphere.

Back in the gauge theory, this corresponds to N mesons receiving the same VEVs. The RG

flow triggered by the VEV will end in the N = 4 SU(N) SYM gauge theory, just because

we put the D3-branes at a regular point. The backreaction of the brane stack yields the

AdS5 throat, so the entire supergravity solution describes the flow1 from AdS5 × T 1,1 to

AdS5 × S5.

Our approach is partially based on the work of Klebanov and Murugan [12]. (See [23,

22, 21] also for closely related work.). They studied a similar emergence of the AdS5 throat

due to a D3-brane stack located at a point on the blown-up two sphere of the resolved

conifold.2 On the gauge theory side this describes an RG flow along the non-mesonic

branch.

Finding the full 10d solution in [12] was equivalent to solving the 6d Laplace equation

with a source for the warp function. In our case, we want to add source D3-branes instead

to the Klebanov-Strassler background, which is more complicated because of the extra

fields etc. But when we add sources, the 6d inhomogeneous Laplace equation is still the

only equation we need to consider, because we are still working within the framework of

the standard D3-brane ansatz. Indeed, the KS warp function satisfies:

�6hKS = gs ⋆6 H
KS
3 ∧ FKS

3 , (1.1)

where HKS
3 and FKS

3 are the NS-NS and RR 3-forms. There is no source term on the right

hand side of the equation, which shows that there are no D3-branes in the background,

but rather only M fractional branes. On the other hand, the corresponding RR charge Ñ

is non zero and the asymptotic behavior of the self-dual RR-form is:

F̃5 ≈ Ñ Vol
(
T 1,1

)
, where Ñ =

3

2π
gs ln

r

r0
·M. (1.2)

To build our background we have to split the warp function into two terms:

h = hKS +HD3, (1.3)

where HD3 (or simply H throughtout the paper) is the solution of the Laplace equation

with the D3-brane source:

�6HD3 = Nδ6(NP), (1.4)

1To be more precise the KS solution reproduces the AdS5 × T 1,1 geometry in the UV only up to

logarithmic corrections, which just indicates the fact that in the KS model the gauge theory in the UV is

not SU(N) × SU(N).
2The singular solution corresponding to D3-branes smeared on the S2 was investigated in [13].
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where NP stands for the North pole of the S3. Now we have:

Ñ = N +
3

2π
gs ln

r

r0
·M. (1.5)

It is essential to notice that the addition of the source term is consistent with the usual

ansatz for D3-branes. In particular, the dilaton is constant, the 0-form vanishes and SUSY

is not broken.

The organization of the paper is as follows. In the next section and in one of the

appendices, we describe the deformed conifold. We introduce a new map which for a given

point on the deformed conifold provides its S3 and S2 coordinates. The map generalizes

the results of [14] for the singular conifold case. We then relate this map to the coordinates

introduced in [15] and later used in [16]. These coordinates are different from the standard

coordinates used by Klebanov and Strassler [19, 6], and prove to be very convenient for

working with the Laplace equation. We explain this in detail in section 3, where we present

the numeric solution of the equation and demonstrate the emergence of the AdS throat.

Section 4 is devoted to the gauge theory. We show how the cubic superpotential of the

N = 4 theory emerges when one expands the mesonic fields around the VEV corresponding

to the North pole of the three-sphere. We end with some remarks in section 5. In particular

we propose why the gravity mode [8] dual to the Goldstone boson of the baryonic symmetry

does not exist in our case. Some of the technicalities have been relegated to various

appendices.

2. The deformed conifold

We start with a brief description of the (singular) conifold. In the physics community3

the word conifold refers to the singular non-compact Calabi-Yau three-fold defined by the

complex quadratic equation
4∑

i=1

z2
i = 0. (2.1)

This equation represents a real cone over a five-dimensional Einstein manifold called T 1,1,

which is the coset space (SU(2) × SU(2))/U(1). The base T 1,1 has the topology of S2 ×
S3 [20], and if we denote the metric on it by dΩ2

T 1,1 then the full conifold metric takes the

standard form of a cone: ds26 = dr2 + r2dΩ2
T 1,1 .

The singularity at the apex of the conifold can be smoothed in two ways while still

respecting the Calabi-Yau condition as explained in the introduction. We will be studying

the deformed case here, the resolved conifold has been subjected to a similar study in [12].

For a review of the various conifolds, see the appendices of [17]. A schematic picture of the

conifold is in figure 1.

3In mathematics, the notion of a conifold is more general. It refers to a generalization of the notion of

a manifold, where we allow conical singularities. The physics-conifold is a special case of the mathematics-

conifold.
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τ = 0

S
3
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2

NP

Figure 1: A schematic picture of the (deformed) conifold. NP stands for the North Pole of the

non-vanishing three sphere at the tip. Our D-branes are at NP.

The deformation of the conifold is defined by

4∑

i=1

z2
i = ǫ2, (2.2)

which can be rewritten with an eye for useful future parametrizations as

detW = −ǫ
2

2
, where W ≡

(
w11 w12

w21 w22

)
=

1√
2

(
z3 + iz4 z1 − iz2
z1 + iz2 −z3 + iz4

)
. (2.3)

By looking at the situation when all zi are real, it is clear that the S3 does not vanish at the

tip. Also worth noticing is the fact that the deformation breaks the zi → eiαzi symmetry

of the singular conifold down to zi → −zi. So the deformed conifold does not have the full

U(1), but only a Z2. The radius of the three sphere can be taken as

r2 ≡
4∑

i=1

|zi|2. (2.4)

It should be noted that this r does not reduce to the radial coordinate of the cone in the

undeformed limit. In fact, if we defined such a radial-like coordinate (i.e., a coordinate that

tends to the radial coordinate of the undeformed conifold, far away from the deformation)

it would behave as r̃ ∼ r2/3. We will use this information later.
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It is customary to use a new coordinate τ such that r2 = ǫ2 cosh τ , in terms of which

the above equation becomes

Tr(W †W ) = ǫ2 cosh τ. (2.5)

The tip where the S2 shrinks to zero corresponds to τ = 0.

Part of our purpose in the rest of this paper will be to use the metric to find the

explicit supergravity solution that corresponds to a stack of D3-branes localized on the

non-vanishing S3. The D3-branes back-react and warp the geometry and we want to

calculate the warp factor. To do this, we will need the Laplacian on the deformed conifold

and it will be convenient to have a parametrization of W where the split between the S2

and the S3 is explicit. The usual form in which the deformed conifold metric is written

down does not have this advantage, so now we consider a system of coordinates where this

split is manifest.

The aim is to package the information in the matrix W into two separate pieces which

can be interpreted as the S2 and the S3. We start with the observation that the hermitian

matrix W †W has two real positive eigenvalues:

λ2
1 =

ǫ2

2
eτ and λ2

2 =
ǫ2

2
e−τ . (2.6)

Taking positive square roots of λ2
1 and λ2

2 we can define a hermitian non-singular matrix

P ≡
(
W †W

)1/2
with the eigenvalues λ1, λ2 > 0. This matrix, in turn, can be diagonalized:

P = UD(τ)U †, where D(τ) ≡
(
λ1 0

0 λ2

)
(2.7)

and U is an SU(2) matrix. Clearly P is invariant under U → eiασ3U for any α, so we have

to quotient U by this U(1) action, which is just the Hopf projection from SU(2) (= S3) to

S2. Thus U describes the S2. To build the S3 we define a new matrix X:

X ≡ −iWP−1. (2.8)

It is easy to check that X is unitary and special, so X ∈ SU(2) = S3.

To summarize, for fixed τ we built a map from W to U and X which defines the S2

and the S3 respectively. The map is invertible and simply given by:

W = iXP = iXUD(τ)U †. (2.9)

Moreover, for τ = 0 we find P ∝ I2×2 and so U is ill-defined, which, as expected, means

that for τ = 0 the two-sphere shrinks to zero size. Furthermore, for τ → ∞ we have

P = r (I2×2 + iQ), where Q is 2 × 2 unitary anti-hermitian matrix and therefore the

formula (2.9) re-produces the trivialization of the singular conifold proposed in [14].

Now, we wish to write the deformed conifold metric not in terms of the original coor-

dinates which mix the S2 and S3, but in terms of the coordinates that manifest the split.

This is easily done because we just have to parametrize U in terms of the angles of the

two-sphere, and X in terms of the angles of the three-sphere. We will follow the notations

– 6 –
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of [18] and introduce two matrices T and S which are equivalent to our X and U .4 We

have:

X = −iTσ3 and U = σ3Sσ3, where S = e
i
2
φσ3e−

i
2
θσ2 . (2.10)

This last bit defines a specific angular parametrization on the S2 in terms of θ and φ. Once

we also make a parametrization of the SU(2) matrix T in terms of the three angles of S3

(which we write down in appendix A), we will be done, and have explicit coordinates on

the deformed conifold in terms of τ , the three-sphere angles, and the two-sphere angles.

Moreover, since it is well-known how to write W (and therefore X and U) in terms of the

standard Klebanov-Strassler coordinates, we also have an explicit transformation relating

the two coordinate systems.

To write the metric in a convenient form, we use the Maurer-Cartan forms wi=1,2,3 on

the three-sphere, defined by

T †dT =
i

2
σiwi. (2.11)

In terms of these angle coordinates and using (A.9), the deformed conifold metric takes

the following form:

ǫ−4/3ds2(6) =
1

6K2(τ)

(
dτ2 + h2

3

)
+
K(τ)

4
cosh2

(τ
2

)[
h2

1 + h2
2 + (2.12)

+4 tanh2
(τ

2

)((
dθ − 1

2
h2

)2

+

(
sin θdφ− 1

2
h1

)2
)]

.

Here

K(τ) =
(sinh(2τ) − 2τ)1/3

21/3 sinh(τ)
(2.13)

and the forms hi=1,2,3 are defined by:5



h1

h2

h3


 =




0 cos θ − sin θ

1 0 0

0 sin θ cos θ







sinφ cosφ 0

cosφ − sinφ 0

0 0 1






w1

w2

w3


 . (2.14)

The two SO(3) matrices in (2.14) reflect the fact that the three-sphere is fibered over the

two-sphere. This fiber is trivial as one can easily verify by properly calculating the Chern

class of the fiber bundle [14]. We explicitly write down the hi in appendix A in terms of

the angles of S3.

From the metric (2.12) it is clear that at τ = 0 the size of the S2 parameterized by θ

and φ smoothly shrinks to zero:6

ǫ−
4

3 ds2(6) ≈
1

4

(
2

3

)1

3

[
3∑

i=1

w2
i + dτ2 + τ2

((
dθ − h2

2

)2

+

(
sin θdφ− h1

2

)2
)]

. (2.15)

4Notice that what we have provided essentially is an explicit construction of the S and T matrices of [18]

in terms of the standard conifold coordinates, captured by W .
5These forms are related to the analogous forms used in [18] as follows: h1 =

√
2g̃3, h2 =

√
2g̃4 and

h3 = g̃5. Notice also that
P

3

i=1
h2

i =
P

3

i=1
w2

i .
6Note that K(τ = 0) =

`

2

3

´1/3
.
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3. D3-brane supergravity

The type IIB supergravity solution with D3-brane sources is fully specified once we solve

the Poisson-type equation for the warp factor on the 6d space. We are interested in putting

the stack of branes at the deformed tip, where the S2 has collapsed to zero size. This means

that we can look for the warp factor which is independent of θ and φ. On top of that,

without loss of generality, we will put the D-branes at the North pole of the S3, so that

only the angle α (see appendix A) will make its appearance in the warp factor. Arguments

entirely analogous to this were made in [21] in a different context, where a more detailed

discussion can be found. Using the Laplacian written down in appendix B, and the above-

mentioned simplifications, the final form of the warp-factor equation that we need to solve

is

�τH +
1

A2(τ)

1

sin2 α
∂α(sin2 α ∂αH) = − 6C

π2ǫ4 sinh2 τ sin2 α
δ(τ − τ0)δ(α). (3.1)

The stack is at τ0 = 0. �τ and A(τ) are defined in appendix B. The general strategy for

fixing the normalization of such delta functions and solving equations of this kind can be

found in [21]. Here, C = (2π)4gsNα
′2, N is the number of D3-branes. It is useful also to

notice that the determinant of the 6d metric is

√
g6 =

ǫ4

96
sinh2 τ sin2 α sin β sin θ, (3.2)

where α and β are the first two angles of the S3 and θ is the first angle (the latitude) of

the S2 (See appendix A).

We first solve the angle part and look for solutions of

1

sin2 α
∂α(sin2 α ∂αYl) + l(l + 2)Yl = 0. (3.3)

We have chosen this form because energy eigenvalues of the d-sphere are of the form

l(l + d − 1). The solutions of this three-sphere equation are in fact simpler than those of

the familiar two-sphere, where the Yl take the well-known Legendre form. Here instead,

we can take the independent solutions in the form

Yl(α) ∼ cos ((l + 1)α)

sinα
,

sin ((l + 1)α)

sinα
. (3.4)

Of the two, since the right hand side of (3.1) is even under α↔ −α, we will only need the

second set to do our expansions. We can fix the normalization by setting
∫ π

0
Yl(α)Yl′(α) sin2 α dα = δll′ . (3.5)

The weight comes from the normalization of the delta function in the warp factor equation

above. This fixes

Yl(α) =

√
2

π

sin ((l + 1)α)

sinα
. (3.6)

Now, we turn to the radial equation, which takes the formidable shape

�τHl −
l(l + 2)

A2(τ)
Hl(τ) = − 6C

π2ǫ4 sinh2 τ
δ(τ − τ0). (3.7)
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We have been able to solve this equation for generic l only numerically.7 To fully fix

a second order differential equation, we need two pieces of data (e.g.: the value of the

function at two different points or the value of the function and its derivative at the same

point.). The homogeneous equation only determines the solution upto an overall constant,

even after one stipulates that it die down at infinity. This overall normalization is fixed by

the strength of the delta-function discontinuity at the origin. In particular, in our case it

turns out that this gives,

lim
τ→0

[
H ′
l(τ) (sinh(2τ) − 2τ)2/3

]
= − 22/3

π2ǫ8/3
C. (3.9)

So one numerical consistency check we can do on our solutions is to check that the left

hand side has a good limit as τ → 0.

We can do another check. We can solve the asymptotic (τ → ∞) form of the differential

equation exactly. The asymptotic (homogeneous) equation takes the form

h′′l (τ) +
4

3
h′l(τ) −

4

3
l(l + 2)hl(τ) = 0. (3.10)

The dying solutions of this equation are

hl(τ) ∼ exp

[
− 2τ

3

(
1 +

√
1 + 6l + 3l2

)]
, (3.11)

which implies that

lim
τ→∞

H ′
l(τ)

Hl(τ)
= −2

3

(
1 +

√
1 + 6l + 3l2

)
. (3.12)

This is easily checked numerically, and indeed we have checked that it is satisfied for our

solutions. A plot of the radial solutions for some values of l are given in figure 2.

The full solution then, can be written as

H(τ, α) =

∞∑

l=0

Hl(τ) Yl(α) Yl(α0 = 0) =
2

π

∞∑

l=0

(l + 1)Hl(τ)
sin ((l + 1)α)

sinα
. (3.13)

One rather basic consistency check that we can do with this full solution is to compare

it to the smeared approximation: the l = 0 term of the above sum should reproduce the

results obtained by assuming that the D3-branes were smeared on the 3-sphere. When

the branes are smeared, the warp factor equation is the Laplace equation with all angular

dependence suppressed, which reduces to �τH = 0. The overall normalization can be

fixed either by comparison with undeformed conifold in the asymptotic region, or by being

careful about the normalization of the delta function source. This normalization essentially

just amounts to an extra factor of 2
π from the integration of the sin2 α that was there in

7For l = 0, there is a slight simplification. The solution can be written as

Hl=0(τ ) ∼
Z τ 1

(sinh 2x − 2x)2/3
dx. (3.8)
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Figure 2: Plots of αHl(τ) where 1

α
= 2

2/3

π2ǫ8/3
C, for l = 0, 1, 3. The curve rises as l increases.

the delta function before the smearing. But from (3.13), we see that it is precisely a factor

of 2
π that multiplies the Hl(τ), when l = 0.

Using the warp factor, one can also demonstrate the emergence of the AdS throat close

to the D-brane stack. This is easiest to do along α = 0.8 There the warp factor (3.13)

takes the form ∼ ∑
(l + 1)2Hl(τ). Now, we can take a “near-horizon” limit of (3.7) and

solve it exactly to find what Hl(τ) looks like close to the stack. It turns out that the

(homogeneous) near-horizon radial equation is

H ′′(τ) +
2H ′(τ)

τ
− l(l + 2)H(τ) = 0, with solution H(τ) ∼ e−

√
l(l+2)τ

τ
. (3.14)

It turns out that the normalization of the solution (fixed by integrating across the source) is

independent of l, so the entire dependence on l and τ is captured by the above expression,

which we write schematically as f(lτ)
τ . Since the sum over all l’s must converge, we can

think of this as a regulator [12] and write

H(r) ∼
∞∑

l=0

l2
f(lτ)

τ
∼

1/τ∑

l=0

l2
f(lτ)

τ
∼
∫ 1/τ

0
l2
f(lτ)

τ
dl ∼

∫ 1
0 x

2f(x)dx

τ4
∼ const.

τ4
. (3.15)

Since the radial coordinate looks like τ near τ ∼ 0 (see footnote), this means that in the

near horizon region, in terms of the flat coordinate, the warp factor goes as ∼ 1
τ4 . But this

is of course what gives rise to the origin of the AdS throat.

8We can expand the deformed conifold metric from the previous section when τ, α ≪ 1. The radial

coordinate turns out to be of the form ∼
√

τ 2 + α2 upto irrelevant numerical factors. By restricting to a

flow along which α = 0, our radial coordinate takes the simpler form τ .
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4. The dual gauge theory and the mesonic branch

As we have explained in the Introduction our supergravity solution describes a stuck of

N D3-branes located at the “tip” of the deformed conifold. The gauge theory dual to

this solution was analyzed both in the original paper [6] and in more detail in [10]. The

dual theory has an SU(Ñ +M)× SU(Ñ ) gauge group, where Ñ is related to M and N as

in (1.5). As the SU(Ñ+M) gauge group becomes strongly coupled in the IR, it is described

effectively by four mesons Mαβ = AαBβ, where A1,2 and B1,2 are the bi-fundamental chiral

fields. The theory is Seiberg dual to a theory with an SU(Ñ) × SU(Ñ −M) gauge group,

where now the first factor becomes strongly coupled in the IR, and the field content is given

by the dual “magnetic” quarks, which play now the role of the bi-fundamental fields. For

each step of the cascade, therefore, we have Ñ → Ñ −M . In general, the duality cascade

proceeds until Ñ becomes smaller than M , where the dual description does not exist and

instead the quantum corrections are captured by the non-perturbative Affleck-Dine-Seiberg

(ADS) term in the superpotential. We are, however, interested in a case where the cascade

stops at Ñ = N , due to the mesons acquiring large enough VEVs. In this situation the

classical superpotential also receives a non-perturbative ADS like contribution:

W = hTr (M11M22 −M12M21) + (M −N)

(
ΛN+3M

detabαβ M

) 1

M−N

. (4.1)

Here the first term is the classical superpotential. Notice that for N > M the determinant

appears actually with a positive power. It becomes a real ADS potential only for N < M .

In any case, however, the moduli space describes N D3-branes moving on the deformed

conifold. Indeed, the equations of motion for the mesons imply that all the matrices Mαβ

commute and also:

det
abαβ

M =
(
h(

N
M

−1)Λ( N
M

+3)
)N

Trab det
αβ

M = Nh(
N
M

−1)Λ( N
M

+3). (4.2)

The matrices Mαβ can be all simultaneousely diagonalized. The above equations will

then both lead to the deformed conifold definition for the eigenvalues of Mαβ ’s with the

deformation parameter ǫ being a function of h and Λ:

ǫ2 ∝ h(
N
M

−1)Λ( N
M

+3). (4.3)

Computations similar to what we have done above can be found, for example, in [24, 25].

In the latter, matrix model techniques were applied for steups with more than one conifold

singularity.

In this paper we have constructed a supergravity solution dual to the mesonic branch

of the gauge theory. The D3-brane source in our picture is located at τ = 0 (the minimal

value of the radial cootdinate), where the two sphere smoothly shrinks to zero. For the

10d solution to be regular the D3-branes have to be localized at a point, which in our

conventions is the North pole of the non-shrinking three-sphere. On the gauge theory side

– 11 –



J
H
E
P
0
5
(
2
0
0
8
)
0
7
2

it means that all the eigenvalues mi
αβ of the matrix Mαβ are the same and correspond

to the North pole of the S3 as we have explained in section 2. An RG flow triggered

by the VEVs leads in the IR to the N = 4 SYM theory, which on the supergravity side

corresponds to AdS throat developed near the D3-brane source. In the rest of this section

we want to show that expanding the superpotential (4.1) around the VEV corresponding

to the North pole we find, as expected, the cubic superpotential of the N = 4 SYM.

In the coordinates introduced in appendix A the North pole corresponds to α = 0 and

thus X = σ0. On the other hand D(τ = 0) = ǫ√
2
σ0 and so (2.9) implies that W = i ǫ√

2
σ0.

We know that mi
αβ ’s are related to wαβ ’s so we have to consider the following VEVs:

〈M11〉 = i
ǫ√
2
· IN×N , 〈M22〉 = i

ǫ√
2
· IN×N , 〈M12〉 = 0, and 〈M21〉 = 0. (4.4)

Next we will consider the expansion around the VEV:

M11 = 〈M11〉 + δ · (Φ − Φ1) , M22 = 〈M22〉 + δ · (Φ + Φ1) ,

M12 = 〈M12〉 + δ · Φ2, M12 = 〈M21〉 + δ · Φ3, (4.5)

where

δ2 ≡ h(−1+ N
3M )Λ(1+ N

3M ). (4.6)

Up to the quartic terms this yields:

W = const+Tr (Φ1 [Φ2,Φ3])+2hδ2TrΦ2 +
2

3
TrΦ3 +Tr (Φ {Φ2,Φ3})+2Tr

(
ΦΦ2

1

)
. . . (4.7)

Here we made use of the formulae collected in appendix C. The first non-trivial term here

is exactly the N = 4 SYM cubic superpotential. Notice that the fields Φi have dimension

one as it should be in the conformal N = 4 theory. It follows from the fact that Mαβ have

dimension two and the parameter δ has dimension one. The remaining field Φ is massive.

This is expected, since the deformed conifold is a three-dimensional embedding in C
4 and

Φ describes the only direction, which is not tangent to the conifold. Thus this field is also

not tangent to the moduli space and is expected to be massive. One can easily check that

integrating out Φ produces quartic Φi terms, which, of course, become irrelevant in the IR.

5. Concluding remarks

In this paper we have constructed a supergravity background dual to the mesonic branch

of the gauge theory. We therefore do not expect the U(1)B to be broken. The baryonic

symmetry is not related to one of the background isometries, it rather appears as a gauge

symmetry of the Wess-Zumino term. Still one can ask whether the Goldstone boson mode

found in [8] ceases to exist once we add the D3-brane source. If the mode does not exist

anymore we can safely assume that the baryonic symmetry is unbroken. This indeed seems

to be the case, since most of the expressions (for example equation (3.25)) in [8] explicitly

include the warp function h. For h = hKS these expressions are normalizable at τ → 0 with

respect to the conifold metric. However, for h = hKS +HD3 most of these expressions will

diverge, since near the North pole at τ = 0 we have h ≈ HD3 ≈ 1
τ4 . It will be interesting to

make this statement more rigorous proving therefore that our background is indeed related

to the mesonic branch of the gauge theory, where no Goldstone boson is expected.
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A. Technicalities: S
2, S

3 and the Kähler metric

We complete the definition of S2 and S3 here by giving the explicit matrices. Using the

matrix S defined in (2.10) the matrix P becomes:

P =
ǫ√
2




e
τ
2 cos2 θ

2 + e−
τ
2 sin2 θ

2 sinh( τ2 )eiφ sin θ

sinh( τ2 )e−iφ sin θ e−
τ
2 cos2 θ

2 + e
τ
2 sin2 θ

2


 . (A.1)

As for the three-sphere S3, it is defined by the real numbers satisfying

x2
0 + x2

1 + x2
2 + x2

3 = 1. (A.2)

This is identical to the group SU(2) because (A.2) is precisely the condition that turns a

general 2 × 2 matrix X defined by

X =

(
x0 + ix3 ix1 + x2

ix1 − x2 x0 − ix3

)
(A.3)

into a special, unitary 2 × 2 matrix. Using the fact that SU(2) is a group, we can use its

Maurer-Cartan one form

X†dX ≡ i

2

3∑

i=1

wiσi, (A.4)

to define a basis of canonical one-forms on S3. If we parametrize S3 in the usual way

x0 = cosα, x1 = sinα cos β, x2 = sinα sin β cos γ, x3 = sinα sinβ sin γ, (A.5)

then, by explicit computation using the above formulae, we find

w1

2
= cos βdα− sinα cosα sin βdβ + sin2 α sin2 βdγ, (A.6)

w2

2
= sin β cos γdα+ (sinα cosα cos β cos γ − sin2 α sin γ)dβ +

−(sin2 α sin β cos β cos γ + sinα cosα sinβ sin γ)dγ, (A.7)
w3

2
= sin β sin γdα+ (sinα cosα cosβ sin γ + sin2 α cos γ)dβ +

+(sinα cosα sin β cos γ − sin2 α sin β cosβ sin γ)dγ. (A.8)
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Now we turn to the conventional definition of the metric on the deformed conifold in

terms of its Kähler potential. We use this in the derivation of (2.12). The metric can be

written in the form [20]:

ds26 = F ′ Tr(dW †dW ) + F ′′ |Tr(W †dW )|2, (A.9)

where F ≡ F(r2) and

F ′ ≡ ∂F
∂r2

=
1

ǫ2
1

sinh τ

∂F
∂τ

, with
∂F
∂τ

= 2−1/3ǫ4/3(sinh(2τ) − 2τ)1/3. (A.10)

B. Laplacian in two different coordinates

This appendix is dedicated to writing down the Laplacian for the deformed conifold in the

standard coordinates and also in the coordinates where the S2 − S3 split is manifest. We

will need only the latter form, but we present both of them here for the convenience of

posterity. In what follows, the functions A(τ) and B(τ) are defined by

A2(τ) =
2−1/3

8
coth

τ

2
(sinh 2τ − 2τ)1/3, B2(τ) =

22/3

6

sinh2 τ

(sinh 2τ − 2τ)2/3
. (B.1)

Klebanov-Strassler coordinates: the scalar Laplacian in Klebanov-Strassler coordi-

nates can be written in the form (the notations can be found in [6]):

�H = �τH + fR(τ)�RH + fS(τ)
(
�1H + �2H

)
+ fm(τ)�mH, (B.2)

where

fR(τ) =
1

B2(τ)
, fS(τ) =

coth2 τ

A2(τ)
, fm(τ) =

cosh τ

A2(τ) sinh2 τ
, (B.3)

and

�τ =
coth2 τ

A4(τ)B2(τ)

∂

∂τ

(
A4(τ) tanh2 τ

∂

∂τ

)
, �R = ∂2

ψ, (B.4)

�i =
1

sin θi
∂θi

(sin θi ∂θi
) +

(
1

sin θi
∂φi

− cot θi∂ψ

)2

. (B.5)

The �i arise from the two S3’s (or equivalently, SU(2)’s) that are part of the original

T 1,1 = SU(2)×SU(2)/U(1). The modding by the U(1) is reflected in the fact that the two

S3 Laplacians share a common angle, ψ. The ugly final piece in (B.2) that could mix the

various angular eigenvalues is:

1

2
�m = − cosψ

(
∂θ1∂θ2 −

(
cot θ1∂ψ − ∂φ1

sin θ1

)(
cot θ2∂ψ − ∂φ2

sin θ2

))
+

+ sinψ

((
cot θ2∂ψ − 1

sin θ2
∂φ2

)
∂θ1 +

(
cot θ1∂ψ − 1

sin θ1
∂φ1

)
∂θ2

)
. (B.6)
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S
2

− S
3 coordinates: with �τ , A(τ) and B(τ) defined as in the previous case, we have:

�H = �τH +
1

A2(τ)
(∂2

1 + ∂2
2 + ∂2

3)H +
1 + coth2 τ

2

4A2(τ)

(
∂θ(sin θ∂θH)

sin θ
+
∂2
φH

sin2 θ

)
+

+
1

A2(τ)

((
sinφ∂1 + cosφ∂2

)
∂θH +

(
cos θ(cosφ∂1 − sinφ∂2) − sinφ∂3

)∂φH
sin θ

)
.

(B.7)

Here ∂i ≡ ∂wi , i = 1, 2, 3.. In particular, (∂2
1 + ∂2

2 + ∂2
3) is nothing but the S3 Laplacian.

When we put the stack of D3-branes on the non-vanishing S3, the S2 has shrunk to zero

size and so we can drop terms that have derivatives of H with respect to θ and φ.

C. Matrix technology

Let us use the notation |M| = detM, where M is an arbitrary invertible square matrix.

Then:

δ|M|n
δMmn

δMmn = n|M|nTr(M−1δM)

δ2|M|n
δMmnδMm′n′

δMmnMm′n′ = n|M|n
(
n
(
Tr(M−1δM)

)2 − Tr
(
M−1δM

)2)

(C.1)

and

δ3|M|n
δMmnδMm′n′δMm′′n′′

δMmnMm′n′δMm′′n′′ = n|M|n
(
n2
(
Tr(M−1δM)

)3 −

−3n
(
Tr(M−1δM)

)
Tr
(
M−1δM

)2

+2Tr
(
M−1δM

)3 )
. (C.2)
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